Pricing and Hedging Tolling Agreements

Dan Mahoney
Head of Asset Modeling

Millwright
Capital Management
Overview

- Features of tolling contracts
- Nature of value
 - Forward and spot
 - Approximations and representation of value
- Identification of value drivers
 - Different market structures
 - Hedging programs
Fundamentally, a call option on power w/floating strike linked to fuel
Types of Tolling Contracts

- Fundamentally, a call option on power w/floating strike linked to fuel
- Simplest form: heat-rate option or spark-spread option
 - Payoff: \((P - HR \cdot G - K)^+\)
Types of Tolling Contracts

- Fundamentally, a call option on power w/ floating strike linked to fuel
- Simplest form: heat-rate option or spark-spread option
 - Payoff: \((P - HR \cdot G - K)^+\)
- More generally: rental or leasing agreement giving the buyer the right to a power plant’s output
Types of Tolling Contracts

- Physically or financially settled
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
 - Min–run levels
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
 - Min-run levels
 - Start-up charges
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
 - Min–run levels
 - Start–up charges
 - Dual fuel use/restrictions on fuels
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
 - Min-run levels
 - Start-up charges
 - Dual fuel use/restrictions on fuels
 - Emissions
Types of Tolling Contracts

- Physically or financially settled
- Often need to account for various physical operational constraints
 - Min-run levels
 - Start-up charges
 - Dual fuel use/restrictions on fuels
 - Emissions
 - Outages
Option value of a toll arises from operational flexibility

- *E.g.*, ability to reverse previous commitments if price spreads move for/against you
Option value of a toll arises from operational flexibility

- *E.g.*, ability to reverse previous commitments if price spreads move for/against you

Many operational decisions take place at the level of spot prices (*e.g.* hourly dispatch)
Forward vs. Spot Value

- Option value of a toll arises from operational flexibility
 - *E.g.*, ability to reverse previous commitments if price spreads move for/against you
- Many operational decisions take place at the level of spot prices (*e.g.* hourly dispatch)
- However, hedging typically takes place at the level of forward prices (*e.g.* monthly)
Forward vs. Spot Value

- Value can be captured on a forward basis by appropriate trading strategies
 - Delta hedging
 - Vega hedging
Forward vs. Spot Value

- Value can be captured on a forward basis by appropriate trading strategies
 - Delta hedging
 - Vega hedging

- There may be opportunities for similar strategies at the spot level
 - Balance-of-month hedging
Forward vs. Spot Value

- Value can be captured on a forward basis by appropriate trading strategies
 - Delta hedging
 - Vega hedging
- There may be opportunities for similar strategies at the spot level
 - Balance-of-month hedging
- Depends on underlying market structure
 - The two valuations are in fact related (Mahoney and Wolyniec 2012d)
Although spot and forward valuations are related, there are important reasons why they can diverge.
Although spot and forward valuations are related, there are important reasons why they can diverge:

- Implied resolution of forward prices from spot model may be unrealistic
Although spot and forward valuations are related, there are important reasons why they can diverge:

- Implied resolution of forward prices from spot model may be unrealistic.
- Implied relation between forward and spot may be either inaccurate or indicative of market inefficiencies.
Forward vs. Spot Value

- Although spot and forward valuations are related, there are important reasons why they can diverge
 - Implied resolution of forward prices from spot model may be unrealistic
 - Implied relation between forward and spot may be either inaccurate or indicative of market inefficiencies
- For these reasons, in the presence of liquid forward markets, it is imperative to base valuations on such information
Although spot and forward valuations are related, there are important reasons why they can diverge

- Implied resolution of forward prices from spot model may be unrealistic
- Implied relation between forward and spot may be either inaccurate or indicative of market inefficiencies

For these reasons, in the presence of liquid forward markets, it is imperative to base valuations on such information

- Much more efficient way of isolating the relevant value drivers
Spot Value and DSP’s

- Notation:
Spot Value and DSP’s

- Notation:
 - P, G: power and gas price, resp.
Spot Value and DSP’s

Notation:
- \(P, G \): power and gas price, resp.
- \(\alpha = \frac{C_{\text{min}}}{C_{\text{max}}} \): ratio of min-to-max operational capacities
Spot Value and DSP’s

Notation:
- P, G: power and gas price, resp.
- $\alpha = C_{\text{min}}/C_{\text{max}}$: ratio of min–to–max operational capacities
- SC, F: start charge and fuel start volume, resp.
- $X = SC + F \cdot G$: total start cost
Spot Value and DSP’s

Notation:
- P, G: power and gas price, resp.
- $\alpha = \frac{C_{min}}{C_{max}}$: ratio of min–to–max operational capacities
- SC, F: start charge and fuel start volume, resp.
 - $X = SC + F \cdot G$: total start cost
- VOM: variable operational cost
Spot Value and DSP’s

- Notation:
 - P, G: power and gas price, resp.
 - $\alpha = \frac{C_{\text{min}}}{C_{\text{max}}}$: ratio of min-to-max operational capacities
 - SC, F: start charge and fuel start volume, resp.
 - $X = SC + F \cdot G$: total start cost
 - VOM: variable operational cost
 - $Z = P - HR \cdot G - VOM$: variable spread
Spot Value and DSP’s

Notation:

- P, G: power and gas price, resp.
- $\alpha = C_{\text{min}}/C_{\text{max}}$: ratio of min-to-max operational capacities
- SC, F: start charge and fuel start volume, resp.
 - $X = SC + F \cdot G$: total start cost
- VOM: variable operational cost
- $Z = P - HR \cdot G - VOM$: variable spread
- u: state of the unit (e.g. on or off for simplicity)
General valuation problem is an optimal stochastic control problem (for an appropriate pricing measure \(Q \)):

\[
V_t(G_t, P_t, u_{t-1}) = \\
\sup_{u_t, \ldots, u_T} E_t^Q \sum_{s=t}^{T} u_s ((\alpha Z_s + (1 - \alpha) Z_s^+) - (1 - u_{s-1}) X_s)
\]
Amenable to backward induction:

\[V_t(G_t, P_t, u_{t-1}) = \]

\[\max_{u_t(G_t, P_t, u_{t-1})} \left\{ u_t \left(\alpha Z_t + (1 - \alpha)Z_t^+ \right) - (1 - u_{t-1})X_t \right\} + E_t^Q V_{t+1}(G, P, u_t) \]

\[= \max \left\{ u_{t-1} \left(\alpha Z_t + (1 - \alpha)Z_t^+ \right) + E_t^Q V_{t+1}(G, P, u_{t-1}), \right\} \]

\[(1 - u_{t-1}) \left(\left(\alpha Z_t + (1 - \alpha)Z_t^+ \right) - X_t \right) + E_t^Q V_{t+1}(G, P, 1 - u_{t-1}) \]
Standard Heuristics and Their Relationship to Optimal Value

- Spread and Heat Rate Options
Spread and Heat Rate Options

- Common approach: start-up costs are “baked into” the heat rate and VOM
Spread and Heat Rate Options

- Common approach: start-up costs are “baked into” the heat rate and VOM
- Toll is valued as a strip of daily block (onpeak and offpeak) options
Spread and Heat Rate Options

- Common approach: start-up costs are “baked into” the heat rate and VOM
- Toll is valued as a strip of daily block (onpeak and offpeak) options
- Only considers a specific subset of dispatch decisions (block starts)
Standard Heuristics and Their Relationship to Optimal Value

- Optimal “Exercise” Heuristic and Forward Value
Standard Heuristics and Their Relationship to Optimal Value

- Optimal “Exercise” Heuristic and Forward Value
 - Use “shadow prices” for making start-up/shut-down decisions
 - Only start up if spark spread is above a certain threshold, don’t shut down until it is below a certain threshold
Standard Heuristics and Their Relationship to Optimal Value

- Optimal “Exercise” Heuristic and Forward Value
 - Use “shadow prices” for making start-up/shut-down decisions
 - Only start up if spark spread is above a certain threshold, don’t shut down until it is below a certain threshold
 - Useful for constrained problems, *e.g.* monitoring the number of start-ups in a given period
Standard Heuristics and Their Relationship to Optimal Value

- Optimal “Exercise” Heuristic and Forward Value
 - Use “shadow prices” for making start-up/shut-down decisions
 - Only start up if spark spread is above a certain threshold, don’t shut down until it is below a certain threshold
 - Useful for constrained problems, e.g. monitoring the number of start-ups in a given period
 - Essentially expresses the (incremental) optionality of changes of state
 - Implementation is usually fairly ad-hoc
Standard Heuristics and Their Relationship to Optimal Value

- Value Function Approximations
Standard Heuristics and Their Relationship to Optimal Value

- Value Function Approximations
 - Considers a greater subset of dispatch decisions
Standard Heuristics and Their Relationship to Optimal Value

Value Function Approximations
- Considers a greater subset of dispatch decisions
- Conditional on monthly (say) information, can decide to take the highest value-yielding strategy:
 - Remain on at min level, and ramp up to max level if economical
 - Start up/shut down every day to min level, ramp up to max in each onpeak/offpeak block
 - Start up/shut down every block to max level
Standard Heuristics and Their Relationship to Optimal Value

- **Value Function Approximations**
 - Considers a greater subset of dispatch decisions
 - Conditional on monthly (say) information, can decide to take the highest value-yielding strategy:
 - Remain on at min level, and ramp up to max level if economical
 - Start up/shut down every day to min level, ramp up to max in each onpeak/offpeak block
 - Start up/shut down every block to max level
 - Much richer set of decisions, but still a lower bound, need to determine how suboptimal it is
 - Perfect foresight or lookback value is a possible criteria, but generally provides too high an overestimate to be useful

D. Mahoney – Millwright Capital
Optimal Value Classifications and Martingale Duality

Well-known martingale duality methods for obtaining upper bound approximations can be extended to optimal control problems (Mahoney and Wolyniec 2012b):
Optimal Value Classifications and Martingale Duality

Well-known martingale duality methods for obtaining upper bound approximations can be extended to optimal control problems (Mahoney and Wolyniec 2012b):

\[
V_t(G_t, P_t, u_{t-1}) \leq \inf_{M} E_t^Q \max_{u_t, \ldots, u_T} \left[\sum_{s=t}^{T-1} (H(G_s, P_s; u_{s-1}, u_s) - M_{s+1}^{u_s} + M_s^{u_s}) + H(G_T, P_T; u_{T-1}, u_T) \right]
\]
Optimal Approximations

Optimal Value Classifications and Martingale Duality

- Notation:
 \[H(G_t, P_t; u_{t-1}, u_t) = u_t \left((\alpha Z_t + (1 - \alpha)Z_t^+) - (1 - u_{t-1})X_t \right) \]
Optimal Value Classifications and Martingale Duality

- Notation:
 \[H(G_t, P_t; u_{t-1}, u_t) = u_t ((\alpha Z_t + (1 - \alpha) Z_t^+) - (1 - u_{t-1}) X_t) \]
- \(M \) is a family of state-dependent \(Q \)-martingales
Optimal Approximations

- Optimal Value Classifications and Martingale Duality
 - Notation:
 \[H(G_t, P_t; u_{t-1}, u_t) = u_t((\alpha Z_t + (1 - \alpha)Z_t^+) - (1 - u_{t-1})X_t) \]
 - \(M \) is a family of state-dependent \(Q \)-martingales
 - Via Doob–Meyer, we see that the closer this family is to the martingale component of the value function, the tighter the duality gap will be
Optimal Approximations

- Optimal Value Classifications and Martingale Duality
 - Notation:
 \[H(G_t, P_t; u_{t-1}, u_t) = u_t (\alpha Z_t + (1 - \alpha) Z_t^+ - (1 - u_{t-1}) X_t) \]
 - \(M \) is a family of state-dependent \(Q \)-martingales
 - Via Doob–Meyer, we see that the closer this family is to the martingale component of the value function, the tighter the duality gap will be
 - Can be used effectively in conjunction with regression-based Monte Carlo or quadrature to improve lower bound valuations
Optimal Approximations

- Parameterization of the Optimal Approximation
Parameterization of the Optimal Approximation

- Need a suitable representation of the value function
Parameterization of the Optimal Approximation

- Need a suitable representation of the value function
- Must allow for a connection to market-based information and tradeables that form any hedging/replication strategy
Optimal Approximations

- Parameterization of the Optimal Approximation
 - Need a suitable representation of the value function
 - Must allow for a connection to market-based information and tradeables that form any hedging/replication strategy
 - Must also permit diagnostics/reconciliations for checking projections of value-driving, non-traded entities
Sufficient Statistics of the Pricing Problem

- Minimal Martingales
 - Pricing problem requires a representation of value in terms of a replicating strategy, with unhedgeable risk appropriately accounted for in the valuation.
Sufficient Statistics of the Pricing Problem

- Minimal Martingales
 - Pricing problem requires a representation of value in terms of a replicating strategy, with unhedgeable risk appropriately accounted for in the valuation.
 - The essence of risk–neutral pricing is to express this representation as an expectation of the payoff function under some probability measure.
Sufficient Statistics of the Pricing Problem

- Minimal Martingales
 - Pricing problem requires a representation of value in terms of a replicating strategy, with unhedgeable risk appropriately accounted for in the valuation
 - The essence of risk–neutral pricing is to express this representation as an expectation of the payoff function under some probability measure
 - The change of measure (from physical, data–generating measure P to pricing measure Q) is in general non–unique
Minimal Martingales

Rough idea behind minimal martingale measure (MMM) is that the physical measure is as unchanged as possible.
Minimal Martingales

- Rough idea behind minimal martingale measure (MMM) is that the physical measure is as unchanged as possible
- More specifically, MMM captures the idea that unspanned risk should go unpriced
 - Technically, P–martingales that are orthogonal to tradeables remain Q–martingales
Minimal Martingales

- Rough idea behind minimal martingale measure (MMM) is that the physical measure is as unchanged as possible
- More specifically, MMM captures the idea that unspanned risk should go unpriced
 - Technically, P-martingales that are orthogonal to tradeables remain Q-martingales
- Mahoney and Wolyniec 2012c consider the relationship of MMM for general affine processes to heuristic representations such as Black–Scholes
Sufficient Statistics of the Pricing Problem

- Long-term Correlation and Cointegration
 - There is in general a complex interaction of both stationary and non-stationary effects that impact the dynamics of price formation in both the power and gas markets
 - Effects operating at different time scales
Long–term Correlation and Cointegration

- There is in general a complex interaction of both stationary and non-stationary effects that impact the dynamics of price formation in both the power and gas markets
 - Effects operating at different time scales
- These effects have a critical impact on the value that can be extracted from different trading strategies around tolling deals
 - Grzywacz and Wolyniec 2011, Mahoney and Wolyniec 2012a
Sufficient Statistics of the Pricing Problem

- Long-term Correlation and Cointegration
 - The presence of cointegrating effects makes it imperative to distinguish between dynamic and static hedging strategies, and the value that accrues from each kind of strategy
Long-term Correlation and Cointegration

- The presence of cointegrating effects makes it imperative to distinguish between dynamic and static hedging strategies, and the value that accrues from each kind of strategy
- Makes commodity (in particular energy) markets very different from financial markets
Sufficient Statistics of the Pricing Problem

- Typical model for gas and heat rate:

\[
\frac{dG}{G} = \mu_g \, dt + \sigma_g \, dw_g
\]

\[
\frac{dH}{H} = \kappa_h (\theta_h - \log H) \, dt + \sigma_h \, dw_h
\]
Sufficient Statistics of the Pricing Problem

- Typical model for gas and heat rate:

\[
\frac{dG}{G} = \mu_g dt + \sigma_g dw_g
\]

\[
\frac{dH}{H} = \kappa_h (\theta_h - \log H) dt + \sigma_h dw_h
\]

- Power \((P = HR \cdot G)\) inherits non-stationary effects from fuel used in generation and stationary effects from the fundamental (weather-driven) demand and generation supply stack
Sufficient Statistics of the Pricing Problem

- Forward and Cash Variances
 - The specific market structure determines what kinds of hedging strategies (e.g. dynamic or static) are available on a forward basis
Forward and Cash Variances

- The specific market structure determines what kinds of hedging strategies (e.g. dynamic or static) are available on a forward basis
- Some markets may permit dynamic hedging over fairly long time horizons (say, up to five years), others over fairly short time horizons (say, less than a year)
Sufficient Statistics of the Pricing Problem

- Forward and Cash Variances
 - The specific market structure determines what kinds of hedging strategies (e.g. dynamic or static) are available on a forward basis
 - Some markets may permit dynamic hedging over fairly long time horizons (say, up to five years), others over fairly short time horizons (say, less than a year)
 - In some cases may have to balance a static hedge with the risk of a dynamic proxy hedge
Sufficient Statistics of the Pricing Problem

- Forward and Cash Variances
 - The specific market structure determines what kinds of hedging strategies (e.g. dynamic or static) are available on a forward basis
 - Some markets may permit dynamic hedging over fairly long time horizons (say, up to five years), others over fairly short time horizons (say, less than a year)
 - In some cases may have to balance a static hedge with the risk of a dynamic proxy hedge
 - Long-term deals may require a blending of dynamic and static value drivers
Sufficient Statistics of the Pricing Problem

- Forward and Cash Variances
 - The same issues apply on an intra-month basis
Sufficient Statistics of the Pricing Problem

- Forward and Cash Variances
 - The same issues apply on an intra-month basis
 - In some cases only a static hedge can be put on, in others some form of dynamic hedging may be possible (e.g. Balmo)
Forward and Cash Variances
- The same issues apply on an intra-month basis
- In some cases only a static hedge can be put on, in others some form of dynamic hedging may be possible (*e.g.* Balmo)
- The value that can be collected will typically vary greatly
Sufficient Statistics of the Pricing Problem

- Forward and Cash Correlations
 - Digging deeper, we see that market structure also determines the choice of relevant value driver
Sufficient Statistics of the Pricing Problem

- Forward and Cash Correlations
 - Digging deeper, we see that market structure also determines the choice of relevant value driver
 - For example, some markets possess reasonably liquid leg option products (typically ATM), others none at all
 - A very few have quoted heat rate option prices
Forward and Cash Correlations

- Digging deeper, we see that market structure also determines the choice of relevant value driver
- For example, some markets possess reasonably liquid leg option products (typically ATM), others none at all
 - A very few have quoted heat rate option prices

The relevant point here is that not only does the blending of leg volatility effects impact correlation, but correlation may not be the appropriate value driver at all!

- Eydeland and Wolyniec 2012
Tolling deals are sophisticated spread option structures

- Often many physical constraints
- Critical to understand joint behavior of power and fuel prices
Summary

- Tolling deals are sophisticated spread option structures
 - Often many physical constraints
 - Critical to understand joint behavior of power and fuel prices
- Equally critical to understand the underlying market structure
 - Determines the availability and character of instruments needed to hedge and extract value
Summary

- Tolling deals are sophisticated spread option structures
 - Often many physical constraints
 - Critical to understand joint behavior of power and fuel prices
- Equally critical to understand the underlying market structure
 - Determines the availability and character of instruments needed to hedge and extract value
- Models need to reflect this structure
 - Understand the nature of the approximations used
 - Be able to connect models to projection of value drivers
References

References

- Mahoney D, and Wolyniec K, 2012b
- Mahoney D, and Wolyniec K, 2012c
- Mahoney D, and Wolyniec K, 2012d